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Abstract

Distributed power generation is one of the most powerful applications of fuel cell technology. Several types of configurations have been
hypothesized and tested for these kinds of applications at the conceptual level, but hybrid power plants are one of the most efficient. These
are designs that combine the fuel cell cycle with other thermodynamic cycles to provide higher efficiency. The power plant in focus is the
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igh pressure (HP)–low pressure (LP) solid oxide fuel cells (SOFC)/steam turbine (ST)/gas turbine (GT) configuration which is a
ision-21 program, which is a new approach, the U.S. Department of Energy’s (DOE’s) Office of Fossil Energy has begun, for d
1st century energy plants that would have virtually no environmental impact. The overall goal is to effectively eliminate—at co
osts—environmental concerns associated with the use of fossil fuels, for producing electricity and transportation fuels. In this d

s gasified in an entrained bed gasifier and the syn-gas produced is cleaned in a transport bed desulfurizer and passed over to ca
odules (at two pressure levels). This module is integrated with a reheat GT cycle. The heat of the exhaust from the GT cycle

onvert water to steam, which is eventually used in a steam bottoming cycle. Since this hybrid technology is new and futuristic, t
evel models used for predicting the fuel cells’ performance and for other modules like the desulfurizer have significant uncertaintie
lso, the performance curves of the SOFC would differ depending on the materials used for the anode, cathode and electrolyte. T
haracterization and quantification of these uncertainties is crucial for the validity of the model predictions and hence is the ma
his paper. This work performs a two-level uncertainty analysis of the fuel cell module: uncertainty associated with (1) model and (2
sed for anode, cathode and electrolytes. Following that the paper deals with the uncertainty analysis of the desulfurization reac
ased in particular on the activation energy and frequency factors for different sorbents used. This paper lays the basis for two a

he effect of uncertainties on the trade-off surface obtained through a multi-objective optimization framework; (2) development of t
f research” framework which is concerned with analyzing the trade-offs between allocation of resources for the reduction of un
nd benefits accrued to the objectives through this reduction [K. Subramanyan, U. Diwekar, The ‘value of research’ methodology

he solid oxide fuel cell/steam turbine/gas turbine hybrid power plant design, Ind. Eng. Chem. Res., submitted for publication].
2004 Elsevier B.V. All rights reserved.

eywords:Distributed generation; Hybrid power plant; Uncertainty; Characterization; Quantification

. Introduction

Uncertainties are inherent in life and most of us have
earnt to deal with them by evolving cognitive heuristics and
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developed strategies. However, as the system becomes
plicated, involving more decisions and much higher sta
heuristics becomes obsolete and mathematical mode
required. This paper deals with scientific and technical un
tainties in policy-focused research, more particularly, w
the uncertainties inherent in the high pressure–low pre
(HP–LP)SOFC/steam turbine (ST)/gas turbine (GT) hy
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power plant with particular emphasis on the solid oxide
fuel cell (SOFC) and desulfurization (DESU). The reason
for designating the research as “policy-focused” is because
the uncertainty analysis is used in developing the “value
of research” methodology which assesses the trade-offs
between allocation of resources for uncertainty reduction and
the benefits accrued to the objectives through this reduction.
This gives us an idea of how much weight should be given to
uncertainty research. For more details on this methodology,
refer to[1]. Until recently, these types of uncertainties have
been treated in much the same way we have dealt with other
uncertainties in our private and public lives. However, the
past decade has seen a growing recognition that policies
that ignore uncertainty about technology often lead to un-
satisfactory technical and social outcomes[2]. For example,
uncertainties in the fuel cell models were found to have a
considerable impact on the optimal designs of the solid oxide
fuel cell–proton exchange membrane hybrid power plant[3].

This paper, dealing with the uncertainties in the SOFC
and desulfurization modules, is an off-shoot of our major re-
search concerning simulation and optimization of the design
and performance of the (HP–LP)SOFC/ST/GT hybrid power
plant which consists of cascaded SOFC at two pressure levels
integrated with a reheat GT cycle and a steam bottoming cycle
[4]. This plant belongs to the vision-21 power plants program
[5,6] initiated by the U.S. Department of Energy (DOE). Dur-
i num-
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t , the

models developed to simulate the SOFC are not exact. Fur-
ther, the development in the area of new materials and other
technologies where the performance and economic data are
scarce and/or incomplete calls for consideration of uncertain-
ties in the design and optimization. The performance of the
desulfurization module also varies depending on the sorbent
used for the absorption. Hence, the accurate characterization
and quantification of these uncertainties play a crucial role
in the proper simulation of the plant and accurate prediction
of objectives. This paper details the process of characteri-
zation and quantification of uncertainties in the SOFC and
desulfurization modules of the SOFC/ST/GT hybrid power
plant.

The section following this introduction gives a brief
overview of the SOFC/ST/GT hybrid power plant concep-
tual design. In the course of description of the plant, the sec-
tion also describes in detail the operation of the SOFC and
the models developed for the SOFC and desulfurizer used
in the simulation. Section3 discusses the quantification and
characterization of uncertainty in the SOFC and in the desul-
furization module in detail. Section4 presents the effect of
uncertainties on the minimum cost design. The final section
puts forth conclusions drawn from this work.

2. Solid oxide fuel cell/steam turbine/gas turbine
h

sec-
t
s lant.

n-21 (H
ng the course of our research, we identified that a large
er of materials were needed to be considered in the fue

or electrolyte issues, electrode performance issues, an
ifferent configurations, in order to obtain the desired pro

ies. Also, since the hybrid power plant is new technology

Fig. 1. Aspen flowsheet for the visio
ybrid power plant conceptual design

This section explains the structure of each individual
ion of the SOFC/ST/GT hybrid power plant briefly.Fig. 1
hows the Aspen flowsheet for this vision-21 power p

P–LP)SOFC/ST/GT hybrid power plant.



K. Subramanyan, U.M. Diwekar / Journal of Power Sources 142 (2005) 103–116 105

Only the major blocks have been shown in the flowsheet and
the abbreviation of each section is attached to the respective
block.

2.1. Air separation unit (ASU)

The purpose of this module is to separate O2 and N2 in
ambient air (AMBAIR), since the gasifier (GAS) requires a
pure oxygen stream. Ambient air (O2, 21%; N2, 79%) enters
the air separation unit and is split into three streams: stream
3—95% of oxygen to the gasifier, stream 4—100% N2 and
stream 2—rest to the molecular sieve vent.

2.2. Gasifier oxidant compressor (GOC)

The oxygen stream from the ASU at ambient conditions
is compressed using an isentropic compressor and heated for
better gasification performance.

2.3. Coal preparation (CP)

The dry coal is crushed and mixed with water in a hopper
resulting in coal slurry with 60% by weight of solids and is
passed to the gasifier.

2.4. Entrained-bed gasifier

The coal slurry and O2 streams enter the entrained-bed
gasifier. Approximately 78% of the total slurry feed is gasi-
fied/combusted in the first (lower) stage (GAS1). Highly
exothermic reactions occur that result in temperatures of
2400–2600◦F. In the upper vertical cylindrical stage (GAS2),
the remaining coal slurry is fed and additional gasification
occurs.

2.5. Desulfurization module

The syn-gas produced during gasification contains pro-
hibitive amounts of hydrogen sulfide (H2S) which has to be
removed if the plant is to abide by emission standards. The
transport desulfurizer model used in our simulation is based
on the work on hot-gas transport desulfurizer by Luyben and
Yi [7,8]. Transport reactors can be operated at higher gas
velocity, which leads to smaller diameter vessels and hence
lower capital cost. They have the additional advantage of
providing better solid/gas contact, so less solid hold-up is
required.

2.5.1. Brief overview of the model
There are assumed to be seven perfectly mixed zones ar-

ranged in series in the axial direction. These solid zones
Fig. 2. Schematic of the desulfurizer mod
el used in the SOFC/ST/GT simulation.
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have different solid hold-ups, solid compositions and tem-
peratures. The gas flows up through these seven zones in
series in plug-flow. There are only two phases in the bed:
rising gas and solid. Mass transfer and reaction are lumped
together by calculating the conversion of H2S or the produc-
tion of sulfur dioxide (SO2) from a reaction rate that assumes
first-order dependence on the concentration of the reactant in
the gas and the concentration of MeO or MeS in the solid.
The reactions that occur in the desulfurizer and regenerator
are:

Sulfidation reaction : MeO+ H2S → MeS + H2O

Regeneration reaction : MeS+ 1.5O2 → MeO + SO2

Due to the small mass of gas in the system, the dynamics of the
gas phase are much faster than those of the solid phase leading
to ordinary differential equations for the gas concentration in
each zone with bed height as the independent variable. This
can be analytically integrated to yield an algebraic equation
for the concentration of the gas-phase leaving the top of each
of the seven beds at each point in time. A schematic of the
model is shown inFig. 2.

2.5.2. Model validation
The results obtained from our model were compared with
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Table 1
Optimization problem set up for the minimization of H2S

Objective
Minimize “H2S”

Decision variables
Vary SRI→ limits “92 000”–“110 000”
Vary FINRI→ limits “35 000”–“50 000”
Vary QSI→ limits “184 400”–“204 000”
Vary QRI→ limits “184 400”–“204 000”

Constraints
Mole fraction of all components >0 and <1

timization block, with minimum H2S as the objective. The
optimization problem set up is given inTable 1.

2.6. High pressure and low pressure solid oxide fuel
cells

The desulfurized syn-gas is split and one part is recycled
back to the gasifier after compression. The other part is di-
vided between the HP and LPSOFC which are at pressures
of 15 and 3 atm, respectively. The syn-gas is expanded before
entering the LPSOFC.

2.6.1. Description of an SOFC
The basic physical structure or building block of a SOFC

or for any fuel cell consists of an electrolyte layer in con-
tact with a porous anode and cathode on either side. The fuel
or oxidant gases flow past the surface of the anode or cath-
ode opposite the electrolyte and generate electrical energy by
the electrochemical oxidation of fuel, usually hydrogen, and
the electrochemical reduction of the oxidant, usually oxy-
gen. The electrolyte not only transports dissolved reactants
to the electrode, but also conducts ionic charge between the
electrodes and thereby completes the cell electric circuit. The
functions of porous electrodes in fuel cells are to provide a
surface site where gas/liquid ionization can take place and to
c .
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hose given in Luyben and Yi[7,8] and there was a perfe
atch. For example, the temperature of the outlet gas is
s 550◦C in their paper[7,8] which is exactly what has be
btained by integration of the model differential equat
y LSODE[9] package as shown inFig. 3. For the complet
odel equations and code of the model, refer to appen
and G, respectively, of reference[10].
When the model was scaled up to the vision-21 hy

ower plant specifications, there were four unknown pa
ters: (1) mass flow rate of sorbent to the desulfurizer (
g h−1); (2) molar flow rate of oxygen to the regenera
FINRI, kg mol h−1); (3) total heat removed from the des
urizer (QSI, kJ h−1); (4) total heat removed from regenera
QRI, kJ h−1). These parameters were calculated using a

Fig. 3. Results of integration with LSODE for temperature of outlet g
onduct ions away from interface once they are formed
Fig. 4shows the operating principle of a SOFC. The e

rochemical reactions occurring in SOFC utilizing H2 and O2
re based on Eqs.(2.1) and (2.2) [11].

t theanode:

2 + O2− → H2O + 2e− (2.1)

t thecathode:

1

2
O2 + 2e− → O2− (2.2)

he overall cell reaction:

2 + 1

2
O2 → H2O (2.3)

olid oxide fuel cells have grown in recognition as a via
igh-temperature fuel cell technology due to several ch

eristics:
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Fig. 4. Operating principle of a SOFC.

• SOFC can use CO as a fuel and is relatively more tolerant
of impurities like sulfur than other conventional fuel cells.
This leads to the ability to use a variety of hydrocarbon
fuels with simpler reforming processes.

• There is no need for noble or precious metals as catalysts
which leads to greater cost-effectiveness (even if the man-
ufacturing process is quite complex).

• The electrolyte is dry and so the humidification of the re-
actants is not necessary and no water management system
is required.

• The operating temperature greater than 800◦C allows
internal reforming, promotes rapid kinetics with non-
precious materials, and produces high-quality byproduct
heat for cogeneration or for use in a bottoming cycle which
makes it ideal for hybrid power plant balance of plant sub-
systems.

As with batteries, individual fuel cells must be combined
to produce appreciable power levels and so are joined in se-
ries by interconnects in a stack. Interconnects must be elec-
trical conductors and impermeable to gases.Fig. 5 shows a
schematic stack configuration of a planar solid oxide fuel
cell.

2.6.2. SOFC models
The SOFC/ST/GT hybrid power plant was modeled using

Aspen Plus[12] simulation software. Since the software does
not include any inbuilt fuel cell model, two approaches were
taken to overcome this problem. The first way was to use a
standard reactor model, like a stoichiometric and/or equilib-
rium reactor, to perform energy and mass balances around the
fuel cell. This unit was to be then coupled with a polarization
model for voltage and current computations. Alternatively,
a new unit (User Model) based on a FORTRAN subroutine
could be used to perform mass and energy balances and po-
larization characterization. The former method was used to
model the HPSOFC and LPSOFC modules.

The methodology that was used to simulate the SOFC
stack for impact assessment is similar to the one utilized by
Geisbrecht[13]. An equilibrium reactor at fixed temperature
performs heat and material balances on the cell and then,
after flowsheet convergence, an Aspen calculator block com-
putes voltage, current density and total cell area applying a
polarization model.

The reactions that take place in a fuel cell are: methane
steam reforming, carbon monoxide water shift and hydrogen
electrochemical oxidation.

CH4 + H2O � 3H2 + CO (methane steam reforming)
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Fig. 5. Schematic of an SOFC stack.
O + H2O � CO2 + H2 (CO water shift)

2 + 1

2
O2 → H2O (electrochemical oxidation)

he first two reactions are at equilibrium[14] while hydrogen
xidation has fixed extent in order to match the given
tilization. Fuel utilization is defined as:

f = Hreacted
2

4CHin
4 + COin + Hin

2

(2.4)

here Hreacted
2 are the total moles of hydrogen reacted; Cin4 ,

Oin, Hin
2 the moles of methane, carbon monoxide and

rogen entering the cell; ‘4’ the moles of H2 generated b
ach mole of methane; and ‘1’ is the mole of H2 generate
y each mole of CO.

The reaction extent of the electrochemical reaction is
ermined by a “design specification” that acts as a feed
ontroller. Reaction extent is manipulated so that:

in
2 − Oout

2 = 1

2
Uf (4CHin

4 + COin + Hin
2 ) (2.5)

here Oin
2 and Oout

2 are the moles of oxygen entering and e
ng the cell andUf is the fuel utilization. Oxygen was chos
s reference element because it reacts only with hydr
ecycling of the gaseous outlet of the cell is necessary
er to reach the desired fuel conversion. The electroche
xidation of CO was neglected because in presence of w

he favorable path for the oxidation of carbon monoxid
enerating hydrogen by the water shift reaction[11,14].
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Fig. 6. Comparison between model and experimental data.

At fixed temperature, a heat balance around the reactor
gives the power output of the cell. The power output divided
by the current (known once the fuel utilization is fixed) gives
the voltage of the cell. Current can be computed as

I = 2FHreacted
2 = 2FUf (4CHin

4 + COin + Hin
2 ) (2.6)

where I is the current andF is the Faraday constant
(96 485 C mol−1).

At this point, an SOFC polarization model is used to find
the current density of the cell at that given voltage.

There are number of papers in the literature concerning
SOFC behavior modeling. As a first step, they can be clas-
sified as steady state[15–22] and dynamic[23] models. A
one-dimensional, steady state, algebraic polarization model
derived from literature[17] was used for our study. This
particular model was chosen because of its simplicity and
comprehensive nature (applicability to every operating con-
dition and sensitivity to the various design components of
the cell). Overpotential equations, based on the complete
Butler–Volmer and diffusion equations, are obtained together
with the necessary parameters from the reference[17].

Since the model gives the voltage as a function of current
density, Newton method (Eqn. 2.8) was applied in order to
obtain iteratively the current density at the desired voltage:

V (i) − V̄ = f (i) = 0 (2.7)

i

w (
V

n to
a

l re-
s rs
f d in
r er-

imental data is acceptable for our level of details. The results
are shown inFig. 6.

Once the current density is obtained, current divided by
current density gives the total cell area (area of the electrodes),
important for cost estimations.

2.7. Gas turbine cycle

The cascaded HP and LPSOFC are integrated with the
reheat gas turbine cycle which consists of two air compressors
and two expanders. The GT cycle produces a power of around
130 MW.

2.8. Steam turbine cycle

The heat of the exhaust from the SOFCs is used to convert
water to steam in a heat recovery steam generator (HRSG)
which is used in a steam bottoming cycle to produce around
118 MW of power.

Table 2gives the distribution of power output between
various sections of the power plant.

3. Characterization and quantification of uncertainty

The process of uncertainty analysis consists of four main
s inty,

T
D ant

S

n+1 = in − α
f (i)

f ′(i)
(2.8)

hereV(i) is the voltage as function of current densityi),
¯ the desired voltage,α a weight parameter, andf′(i) is the
umerical derivative off(i). For the complete code, refer
ppendix A of reference[24].

This polarization model was tested with experimenta
ults from reference[25]. Even if the original cell paramete
rom reference[17] were kept (since no data were provide
eference[25]), the fitting between the model and the exp
teps: (1) characterization and quantification of uncerta

able 2
istribution of power output between various sections of the power pl

ystem performance summary
Gas-turbine cycle power output (MW) 133.67
Steam-turbine cycle (MW) 110.05
HPSOFC (MW) 188
LPSOFC (MW) 112
Gross power (MW) 560
Auxiliary power consumption (MW) 40
Net power (MW) 520
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(2) sampling, (3) propagation through framework, (4) anal-
ysis of results. The first step is of foremost importance on
which the validity of the uncertainty analysis rests on. Char-
acterization refers to the process of representing uncertainty
through mathematical expressions in order to facilitate anal-
ysis with mathematical tools. Quantification refers to the rep-
resentation of uncertainty with probability distribution func-
tions (PDF) which illustrate the frequency of occurrence of
each uncertainty. In uncertainty analysis, variables which are
functions of the uncertain parameters do not have a specific
point value. They are represented as expected values over
repeated iterations. The probability distributions of each un-
certain parameter is sampled and propagated through the
framework. This is repeated a specific number of times to
compute the expected value of the objectives. The sampling
technique employed also has an impact on the uncertainty
analysis. However, that discussion is beyond the scope of
this paper.

3.1. Uncertainty in the SOFC

The hybrid fuel cell technologies are new and futuris-
tic and hence the system level models used to estimate the
SOFCs’ performance have significant uncertainties in them.
Also, the performance curves of the SOFCs would differ de-
pending on the materials for the anode, cathode and elec-
t

A two-level uncertainty analysis was performed for the
SOFC modules. Performance data, i.e. current density (I)
versus voltage (V) data, for SOFC were collected from lit-
erature[26–70] and two types of uncertainties were identi-
fied:

• model uncertainty: uncertainty in the parameters used in
the SOFC model;

• material induced uncertainty: uncertainty due to the
various materials used for anode, cathode and elec-
trolyte in the SOFCs resulting in different performance
curves.

In order to differentiate between these two types of un-
certainties, data for various anode, cathode and electrolyte
materials were collected from literature. This involved digi-
tizing the experimental graphs to obtain the actual numbers,
resulting inI versusV experimental data for 45 materials. To
calculate the uncertainty factor (UF), we required the voltage
calculated using the SOFC model. This called for estima-
tion of some missing parameters using non-linear program-
ming (NLP) optimization (minimization of square of error)
technique and eventually, the voltage was calculated using
the SOFC model which computes cell voltage as a function
of current density. Thereby, we obtained voltage values at
the current densities matching our experimental data. For the
code developed for this parameter estimation process, refer
t
rolyte.
Fig. 7. Schematic of the process of computing UF distribution, mea
o appendix B of reference[10]. Using thisI versusVexpt and
n and variance for a particular anode/electrolyte/cathode material set.
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Fig. 8. The estimated UF distribution mean and variance for LSM cathode material and base anode and electrolyte materials are CeO2–Cu–YSZ and YSZ,
respectively.

I versusVmodel data, UFmat,i was defined as:

UFmat, i = experimental voltage forith material

model calculated voltage forith material
(3.1)

By this process, UFmat distribution is obtained for each an-
ode/electrolyte/cathode material set. The schematic for com-
puting the UFmat for a particular cathode/anode/electrolyte
combination is given inFig. 7. The results of applying
the same methodology on two other cathode and anode
materials are given inFigs. 8 and 9, respectively. When

the methodology was applied to all 45 materials, it was
found that for majority of the materials, the UF distribution
was log-normal. Using the log-normal probability density
function, mean and variance equations shown in Eqs.
(3.3)–(3.5) [71], the moments for each distribution are
estimated. Through this, we obtained mean (UFmat,mean,i)
and variance (UFmat,var,i) values for 45 materials shown in
Table 3. The following are the abbreviations inTable 3:
GDC—Ce0.9Gd0.1O1.95; SSC—Sm0.5Sr0.5CoO3; ZYO—
Zr0.84Y0.16O1.92; LSM—La0.85Sr0.15Mn1.1O3; LSGMC1—

F Z anod M and YSZ,
r

ig. 9. The estimated UF distribution mean and variance for Cu–YS
espectively.
e material and base cathode and electrolyte materials are YSZ–LS
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Table 3
Type of distribution, mean and variance of UF distributions for all anode/electrolyte/cathode materials

Anode/electrolyte/cathode assembly Distribution Mean Variance

La0.6Sr0.4Fe0.8Co0.2O3−x/YSZ/LSM Log-normal 1.62 0.43
Ni + GDC/SSC + 10 wt.% GDC/GDC Log-normal 1.71 0.0335
Sr0.2Ba0.4Ti0.2Nb0.8O3/YSZ–Al2O3/Pt Log-normal 1.96 1.11
SrCo0.8Fe0.2O3−x/YSZ/LSM Log-normal 1.88 1.04
Ni–8YSZ/TZ3Y/Sr doped LaMnO3 Log-normal 1.92 0.038
SrFeCo0.5Ox/YSZ/LSM Log-normal 1.84 0.65
Ni-50 wt.% GDC/GDC/SSC Log-normal 1.57 0.068
SYTG/ZYO/SrTiO3 Log-normal 1.57 0.29
Ni–YSZ/YSZ/LSM Log-normal 1.91 0.71
Cu p-YSZ/YSZ/LSM Log-normal 1.82 1.41
CeO2–Cu p-YSZ/YSZ/LSM Log-normal 1.58 0.99
LSFC/YSZ/LSM + 20 wt.%YSZ Log-normal 1.79 1.08
Platinum/ceria/perkovsite Log-normal 1.96 0.33
Ni–YSZ/20 wt.% of Ce0.8Gd0.2O1.9/LSM Log-normal 1.77 0.042
Ni–YSZ/YSZ/10 times SDC coated LSM Log-normal 1.71 0.21
Ni–YSZ/YSZ/(LSM1–MnCO3)–(YSZ) Log-normal 2.12 0.04
Ni–YSZ/YSZ/10 times (YSZ) coated LSM Log-normal 1.63 0.20
SDC/YSZ/La0.85Sr0.15MnO3 Log-normal 1.28 0.031
Ni–YSZ/YSZ/(LSM1) (40 vol.%)–(YSZ) Log-normal 1.61 0.41
Ni–YSZ/CGO/60 wt.% of Ce0.8Gd0.2O1.9 Log-normal 1.77 0.32
Ni–YSZ/CGO/30 wt.% of Ce0.8Gd0.2O1.9 Log-normal 1.73 0.34
Ni–YSZ/CGO/10 wt.% of Ce0.8Gd0.2O1.9 Log-normal 1.76 0.38
Ni–YSZ/CGO/0 wt.% of Ce0.8Gd0.2O1.9 Log-normal 1.89 0.68
LSM–YSZ/YSZ/YSZ Log-normal 1.60 0.89
LSM–YSZ/YSZ/gadolinia doped ceria Log-normal 1.41 0.35
Ni–YSZ/CGO/LSM1 [5 wt.% C powder] Log-normal 1.39 0.88
Ni–YSZ/CGO/LSM2 [0 wt.% C powder] Log-normal 1.57 0.065
Ni–YSZ/CGO/LSM3 [10 wt.% C powder] Log-normal 1.55 0.022
Ni–YSZ/YSZ/(LSM1) (50 vol.%)–(YSZ) Log-normal 1.65 0.62
Ni–ceria/La0.6Sr0.4Co0.2Fe0.8O3/LSGM Log-normal 1.85 0.10
NiO–CLO/CLO/lithiated Ni–CLO Log-normal 2.26 0.91
Pt/Sr-doped LaInO3/Pt Log-normal 1.48 0.40
Pt/Sr Ce0.95Yb0.05O3/Pt Log-normal 2.29 0.36
CGO–LSM/CGO–LSM/LSM–(YSZ) Log-normal 1.22 0.24
Pt/LSGM/Pt Log-normal 1.82 0.14
Pt/doubly doped ceria/Pt Log-normal 2.09 0.89
LSFC/GDC/Ni–YSZ Log-normal 1.75 0.21
Ni–CeO2/LSGMC1/SSC Log-normal 1.56 0.36
Ni–CeO2/LSGMC2/SSC Log-normal 2.19 2.09
CeO2–Cu–YSZ/YSZ/YSZ–LSM Log-normal 1.89 0.55

La0.8Sr0.2Ga0.8Mg0.15Co0.05O3−x; CLO—CeO2–La2O3;
LSGMC2—La0.8Sr0.2Ga0.8Mg0.115Co0.085O3; LSGM—
La0.9Sr0.1Ga0.8Mg0.2O2.85; CGO—gadolinium doped
ceria; LSFC—La0.6Sr0.4Co0.2Fe0.8O3; SDC—Sm0.2Ce0.8
O2; YSZ—yittirium-stabilized zirconia; SYTG—Sr0.85
Y0.10Ga0.05O3−x.

It can be noted fromFigs. 8 and 9and Table 3
that estimated mean and variance for different an-
ode/electrolyte/cathode combination materials are different.
This phenomenon is due to the uncertainty associated with the
materials. The total mean for all the materials which repre-
sents the entire uncertainty associated with material selection
is calculated by the equation:

UFmat,mean,T =
∑N

i=1UFmat,mean,i

N
(3.2)

where UFmat,mean,i is the mean of the UF distribution
for the ith anode/electrolyte/cathode material combination;

UFmat,mean,T the total mean of all the individual material UF
means; ‘N’ is the number of anode/electrolyte/cathode mate-
rials which in this case is 45.

Log-normal distribution

Probability density function :

f (y) = 1

yσ
√

2Π
exp

{
−(ln y − µ)2

2σ2

}
, y > 0 (3.3)

Mean : E(y) = exp

(
µ + σ2

2

)
(3.4)

Variance : V (y) = exp(2µ + σ2)[exp(σ2) − 1] (3.5)
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Fig. 10. Combined UFmat,meandistribution for fuel cell materials.

For the model code based on non-linear programming
technique[72] developed for the estimation of the mean and
variance of each of the given PDFs using Eqs.(3.3)–(3.5)
for the log-normal distribution[71], refer to appendix E of
reference[10].

The combined distribution of means, UFmat,mean, and vari-
ances, UFmat,var, was calculated and it fitted the normal and
log-normal distributions given inFigs. 10 and 11, respec-
tively. The mean and variance of the UFmat,meandistribution
were estimated and the mean was found to be equal to that
calculated by Eq.(3.2). This figure illustrates the entire uncer-
tainty associated with material selection. With this, material
uncertainty analysis is complete and we then moved on to
model uncertainty analysis.

The ‘model uncertainty’ is accounted for by taking the
experimentalI versusV data for a single material, calculat-
ing the ratio of experimental to model voltage thereby com-
puting the uncertainty factor (UFmod,mean, UFmod,var). The
UF distribution for a particular material represents the uncer-
tainty associated with purely the model parameters without
the ‘noise’ of material uncertainty. Hence, theI versusVdata
for a particular material (in this case, LSM + 50 vol.%YSZ
cathode, YSZ electrolyte and Ni–YSZ anode) were cho-
sen and the UFmod distribution was computed. The distribu-
tion plot of UFmod (uncertainty factor associated with model
parameters) chosen for this model uncertainty is given in
F

Fig. 12. UFmod distribution for uncertainty in fuel cell model parameters.

3.2. Uncertainty analysis of the desulfurization section

The next step was to deal with the uncertainty associated
with the desulfurization reaction[7,8]. The sequential process
followed for obtaining uncertainty distribution is:

(1) Desulfurization reaction rate constants (ks) versus tem-
perature (T) Arrhenius plots (ks =ks0exp(−Ea/RT)) from
literature for different sorbents used in the desulfuriza-
tion of syn-gas were collected. There was a large amount
of literature concerned with removal of sulfur dioxide
from the syn-gas. However, our case concerns only hy-
drogen sulfide removal. Narrowing the literature resulted
in Arrhenius plots for 20 different sorbents[73–88].

(2) Each of the plots was digitized to obtain usableks versus
T data values.

(3) For a particular sorbent, the plot of 1/T (K) versus ln(ks)
gives a linear (or almost linear) curve whose slope is
−Ea/Rand intercept is ln(ks0).

(4) We obtained ks0—pre-exponential factor and
Ea—activation energy values for 20 different sor-
bents. The first complication was that thek0 values
obtained were of different units and some of them were
dependent on the dimensions of the bed. This required
obtaining more data related to surface area and density
of each sorbent so as to fit out model description. It

lues
ence

( -
al.

F ctor.
ig. 12.

Fig. 11. Combined UFmat,vardistribution for fuel cell materials.
was found that the difference between various va
of these constants was in order of magnitude and h
they had to be scaled by using their logs.

5) Next we fitted theks0 andEa values in probability distri
bution function and both distributions were log-norm

ig. 13. UF distribution for desulfurization reaction pre-exponential fa
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Fig. 14. UF distribution for desulfurization reaction activation energy.

The distribution plots for the desulfurization pre-
exponential factor and the activation energy uncertain-
ties are given inFigs. 13 and 14, respectively. From the
figures, it can be seen the log of the frequency factors and
the activation energy followed log-normal distributions.

With this, the characterization and quantification of uncer-
tainties for the fuel cell module and desulfurization reaction
module of the SOFC/ST/GT hybrid power plant was com-
pleted. The developed distributions serve two purposes: (1)
as mentioned before, they can be used for developing the
‘value of research’ framework; (2) the fact is that in case
of this hybrid power plant, there are multiple objectives like
capital cost, CO2 and SO2 emissions, etc. to be optimized
simultaneously. By sampling the distributions and propagat-
ing them through the framework, the effect of uncertainties
on the multiple objectives can also be gauged. The following
section presents the effect of uncertainties on the minimum
cost design.

4. Effect of uncertainties on the minimum cost design

The flowsheet model described earlier is the base case
model. We performed optimization to obtain a minimum
cost design using sequential quadratic programming (SQP),
a -

s.

Table 4
The objective, constraints and decision variables for the (HP–LP)SOFC/
ST/GT hybrid power plant

Objectives
Minimum capital cost (TCRKW)

Subject to
Mass and energy balance constraints
Power rating of 560 MW (base case)

Decision variables
Fuel utilization (FUT)
Temperature of HPSOFC (HPTEMP)
Temperature of LPSOFC (LPTEMP)
Pressure of HPSOFC (HPPRES)
Split ratio of fuel to HP and LPSOFC (RATIO)
Temperature of fuel inlet to desulfurizer (TRADC)
Mass inlet of dry coal (DRYCOA)

mulation describing objective function, constraints and deci-
sion variables is presented inTable 4and the results of the
optimization are presented inFig. 15.

As shown inTable 4, minimum capital cost is the primary
objective. The decision variables were identified by perform-
ing a sensitivity analysis to identify which input variable had
the maximum impact on six different objectives including
capital cost.Fig. 15 compares the results of deterministic
optimization of the minimum cost design and effect of un-
certainties on this minimum cost design. The curve is the cu-
mulative density function of stochastic capital costs and the
vertical line is the deterministic capital cost. It is clear from
the figure that deterministic optimization has under-predicted
the capital cost value significantly. From the figure, it is ap-
parent that there is more than 90% probability that the cost
will exceed the deterministic cost. The cost can range from
US$ 2174 kW−1 to US$ 3547 kW−1.

5. Conclusions

Characterization and quantification are the most impor-
tant steps in uncertainty analysis on which the accuracy
of the whole analysis rests on. This paper dealt with the
characterization and quantification of uncertainties in the
solid oxide fuel cell and the desulfurization modules for the
S le, a
t ate-
r The
m
V del
v tion
f ance
f nd
v . The
t mal
w ated
b und
t ion
non-linear programming technique[72]. The problem for

Fig. 15. Comparison of deterministic stochastic capital cost value
OFC/ST/GT hybrid power plant. For the SOFC modu
wo-level uncertainty analysis was performed, i.e. both m
ial uncertainty and model uncertainty were considered.
aterial uncertainty was quantified by: (1) collectingI versus
data for 45 different materials, (2) computing the mo

oltage for each material, (3) calculating the UF distribu
or each material, (4) estimating the mean and vari
or each distribution. Finally, distribution of the mean a
ariance represents the total uncertainty due to materials
otal material-induced distribution was found to be nor
ith a mean of 1.68. The model uncertainty was calcul
y choosing a single material and the distribution was fo

o be log-normal with a mean of 1.52. This distribut
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represented the uncertainty due to the fuel cell model pa-
rameters. Next, the uncertainty in the pre-exponential factor
and activation energy of the desulfurization reaction was
characterized and quantified. The log of frequency factor and
activation energy were found to have log-normal distributions
with means at 11.5 and 23 kJ mol−1, respectively. The effect
of uncertainties on the minimum capital cost design was
examined and it was found that deterministic optimization
under-predicted the capital cost value significantly.
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